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Grouping	by	Relaxation
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relaxation

Relaxation	methods seek a	solution by stepwise minimization
("relaxation")	of constraints.

Analogy with
spring	system:

•

•

• •

•x1

x2

x1

x3

x4

x5

Variables	xi take on	values (=	positions)	where springs are maximally relaxed	corresponding to a	
state of global	minimal	energy.	Hence relaxation is often realized by "energy minimization".
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Contexts	for	Edge	Relaxation
Iterative	modification of edge strengths usingcontext-dependent
compatibility rules.
Context types:

Each context contributeswith weightwj = w0× {-1 ... +2} to an	interative
modification of the edge strength of the central element.	
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Modification	Rule	for	Edge	Relaxation
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Pi
k edge strength in	position i after	iteration k

Qij
k strength of context j for position i after iteration k

wj weight factor of context j

m, n ranging	over all	supporting and not	supporting edge positions of context j,	
respectively.

Pi
k+1 = Pi

k 1+ΔPi
k

1+Pi
kΔPi

k

ΔPi
k = wjQij

k

j=1

N

∑

edge strength modification rule

edge strength increment

edge context strength

There is empirical evidence (but	no proof)	 that for most edge images this relaxation
procedure converges within 10 ... 20 iterations.	

Qij
k = Pm

k∏ ⋅ 1−Pm( )∏
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Example	of	Edge-finding	by	Relaxation
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Landhouse	scene from VISIONS	project,	1982
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Histogram-based Segmentation	
with Relaxation	I

Basic	idea:
Use relaxation to introduce a	local similarity constraint into histogram-based
region segmentation.

1. Determine cluster centers by multi-dimensional	histogramanalysis

2. Label	each pixel by cluster-membership	probabilities pi , 1 = 1 ... N
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red

green

red

•
• •

•

green

pi =
1
di
1
dik=1

N
∑

di is Euclidean distance between the feature vector of the pixel
and cluster center

cluster centers i = 1 ... N
!ci

!ci
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Histogram-based Labelling
with Relaxation	II

3. Iterative	relaxation of the pi(j) of all	pixels j:
- equal labels of neighbouringpixels support each other

- unequal labels of neighbouringpixels inhibiteach other

4. Region	assignmentof each pixel according to its maximal	
membership probability:	max pi

5. Recursiveapplication of the procedure to individual	regions
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D(j) is neighbourhood of pixel jqi ( j) = [w+pi (k)−w
−(1− pi (k))

k∈D( j )
∑ ]

!pi ( j) =
pi ( j)+ qi ( j)
(pn ( j)+ qn ( j))

n
∑

new probability pi´(j) of pixel j to belong
to cluster i
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Relaxation	with	a	Neural	Network
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Principle:

wji

wijai aj

cells influence each other´s
activation via	exciting or
inhibiting weights

Relaxation	labelling of 4	pixels:	
pixel 1 pixel 2 pixel 3 pixel 4

bidirectional inhibiting connection

bidirectional exciting connection
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Hough	Transform	I
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Robust	method for fitting straight lines,	circles or other geometric figureswhich can
be described analytically.

Given:	 Edge	points in	an	image
Wanted: Straight	lines supported by the edge points

An	edge point (xk, yk) supports all straight lines y = mx + c with
parameters m and c	such	that yk = mxk + c.
The	locus of the parameter combinations for straight lines through
(xk, yk) is a	straight line in	parameter space.

m

c

yk/xk

yk

• Provide accumulator array for quantized straight line parameter combinations
• For each edge point,	 increase accumulator cells for all	parameter combinations

supported by the edge point
• Maxima	in	accumulator array correspond to straight lines in	the image

Principle of Hough	transform for straight line fitting:
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Hough	Transform	II
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For straight line finding,	 the parameter pair	(r,	γ)	is commonly used because it avoids
infinite	parameter values:	

xk cos(γ) + yk sin(γ) = r x
r

γ

(xk, yk)

x

y

Eachedge point (xk, yk) corresponds to a	
sinusoidal in	parameter space:

π 2π
γ

r

Important improvement by exploiting direction information at edge points:	
(xk, yk, φ) xk cos(γ) + yk sin(γ) = r restricted to φ-δ ≤ γ ≤ φ+δ

direction tolerancegradient direction
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Hough	Transform	III

Same	method maybe applied to other parameterizable shapes,	e.g.
• circles:							(xk - x0)2 + (yk - y0)2 = r2 3	parameters x0, y0, r

• ellipses

Accumulator arrays growexponentiallywith number of parameters
à quantizationmust	be chosenwith care
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5	parameters x0, y0, a, b, γ
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Generalized	Hough	Transform
• shapes are described by edge elements

(r θ φ) relative	to an	arbitrary reference
point (xc yc)

• φ is used as index into (r θ) pairs of a	
shapedescription

• edge point coordinates (xk yk) and gradient
direction φk determine possible reference
point locations

• likely reference point locations are
determined via	maxima in	accumulator array
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φ1: {(r11 θ11) (r12 θ12) ... }
φ2: {(r21 θ11) (r22 θ12) ... }
...
φN: {(rN1 θ11) (rN2 θ12) ... }

(xk yk φk) {(xc yc)} = { (xk - ri(φk) cos θi(φk),  (yk - ri(φ) sin θi(φk)) }

counter cell in	accumulator array

o
(xc yc)

r
θ

φ

x

y
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Region	Description	for	Recognition	
• For object recognition,	descriptions of regions in	an	image have to be

comparedwith descriptions of regions of meaningful objects (models).	
• The	general problemof object recognitionwill	be treated later.
• Here we learn basic region description techniques for later stages in	image

analysis (including recognition).
• Typically,	region descriptions suppress (abstract from)	irrelevant	details

and expose relevant	properties.	What is "relevant"	depends on	the task.

Example:	OCR	(Optical	Character Recognition)
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region abstraction	1

•

•

•

•
•

abstraction	2 abstraction	3

0x4b
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Simple	2D	Shape	Features

In	such	cases simple	2D	shape features may be useful,	 such	as:
• area
• boxing rectangle
• boundary length
• compactness
• second-order	momentums
• polar	signature
• templates
Features	may or may not	have invariance properties:
• 2D	translation invariance
• 2D	rotation invariance
• scale invariance
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For industrial recognition tasks it is often required to distinguish
• a	small numberof different	shapes
• viewed from a	small numberof different	view points
• with a	small computational effort.
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Euler	Number
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The	Euler	number is the difference between the numberof disjoint regions and the
numberof holes in	an	image.

P =	number of parts
H =	number of holes
E = P - H

Example:
P = 5
H = 2
E = 3

Surprisingly,	 E (but	not	P or H)	can be computed by
simple	local operators.

Operators	for regions with asymmetric connectivity:
4-connected		NE	and SW
8-connected	NW	and SE

pattern1	=

pattern2	=

E	=	(count of pattern1)	- (count of pattern2)	
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Area
The	area of a	digital	region is defined as the number of pixels of the region.	For an	
arbitrarily fine resolution,	 area is translation and rotation invariant.	In	praxis,	
discretization effects may cause considerably variations.
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area = 28

area = 31
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Boxing Rectangle

Boxing rectangle =	width of a	shape in	x- and y-direction
• easy	to compute
• not rotation invariant

To achieve rotation invariance,	the rectangle must	be fitted parallel	to an	
innate orientation of the shape.	Orientation	can bedetermined as the axis of
least	inertia (see second order moments).
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y

x

b

a

(a.k.a. Bounding Rectangle or Bounding Box)
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Boundary	Length
The	boundary length is defined as the number of pixelswhich constitute the
boundary of a	shape.
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area =	77

boundary
length =	32

area	=	69

boundary	
length	=	40
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Compactness

Compactness	describes analog shapes independentof linear	
transformations.	

Compactness	for discrete shapes is in	general not translation,	
rotation or scale invariant	due	to discretization effects.
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(non-)compactness = (boundary length)2
area

very compact not	very	compact
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Center	of	Gravity
Consider a	2D	shape evenly covered withmass.	Physical concepts such	as:
• center of gravity
• moments of inertia
may be applied.

Center-of-gravity coordinates:
D =	digital	region
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x

yThe	center of gravity is the location where first-
order	moments sum to zero.

(i-is ) = 0
ij∈D
∑     (j-js ) = 0

ij∈D
∑

is =
1
D

i
ij∈D
∑      js =

1
D

j
ij∈D
∑

•

is

js
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Second-order	Moments
Second-order	moments ("moments of inertia")	measure the distribution of mass
relative	to axes through the center of gravity.
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mx = (i-is )
2

ij∈D
∑ = i2

ij∈D
∑ − is

2 D

my = (j-js )
2

ij∈D
∑ = j

ij∈D
∑

2
− js

2 D

mxy = (i-is )(j-js )
ij∈D
∑ = ij

ij∈D
∑ − is js D

moment of inertia relative	to y-axis
through center of gravity

moment of inertia relative	to x-axis
through center of gravity

"mixed"moment of inertia relative	to x- and y-
axis through center of gravity,
zero if x- and y-axis are "main axes"

• x

y
mx > my mxy = 0

•

y

x

mx < my mxy ≠ 0
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Axis	of	Minimal	Inertia
The	axis of minimal	inertia can be used as an	
innate orientation of a	2D	shape.

1. The	axis of least	inertia passes through the center of gravity
2. The	mixedmoment mvw relative	to the axes v	andwmust	be zero
If themixed moment is nonzero,	
the axismust	be turned by the angle	α:
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Inertia	(=	second order moment)	
relative	to an	axis is the sum of the
squared distances between all	pixels of
the shape and the axis. v

rij

mv = rij
2

ij∈D
∑

w

•
x

y

tan2α =
2mxy

my −mx

•

v

w

x

y

α
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Polar	Signature

The	polar	signature records the angular	segments where circles around
the center of gravity lie within a	shape.	
• scalable from coarse to fine by appropriate number of circles
• radii of circles must be chosen judiciously
• translation-invariant
• rotation-invariance can be achieved by cyclic shifting
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Object	Recognition	Using	
the	Polar	Signature
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Model	signatures

Recognition	results
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Convex	Hull
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A	region R is convex if the straight-line segment x1x2 between any two points of R lies	
completely inside of R.		

For an	arbitrary region R,	the convex hull H
is the smallest convex region which contains R.

Example of shape with convex hull:

Intuitive	convexhull algorithm:
1. Pick	lowest and left-most	boundary point of R as starting point Pk = P1.	Set	direction of

previous line segment of convex-hull boundary to

2. Follow	boundary of R from current point Pk in	an	anti-clockwise direction and compute angle	θn
of line PkPn for all	boundary points Pn after	Pk.	The	point Pq with θq = min{θn} is a	vertex of the
convex hull boundary.

3. Set	Pk = Pq and and repeat 2)	and 3)	until Pk = P1.

There are numerous convex hull algorithms in	the literature.	The	most efficient is O(N)	
[Melkman 87],	see Sonka et	al.	"Image	Processing	...".	

!v  =  (0 -1)T

!v  =  (Pk  Pn )T
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B-Splines I
B-splines are piecewise polynomial curveswhich provide an	approximation of
a	polygon based on	vertices.

Important properties:
• eye-pleasing smooth	approximation of control polygon
• change of control polygon vertex influences only small neighbourhood
• curve is twice differentiable (e.g.	has well-defined curvature)
• easy	to compute
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•
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• •

• •
•

• • •
•

• •

precision depends on	distances of vertices



B-Splines II

B-splines can be defined by means of a	parametric (closed)	curve
with one free parameter s:

with:
• s parameter,	changing linearly from i to i+1 

between vertices and
• vertices of control polygon
• Bi(s) base functions,	nonzero only in	[i-2 , i+2]
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!x(s) = !viBi (s)
i=0

N+1

∑

!vi
!vi+1!vi



B-Splines III
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C0 C1 C2 C3

1

Each base functionBi(s) consists of four parts:

The	resultingcurve equation is:

Example:	s=	7.7,	i=7

!x(s) =C3(s− i)
!vi−1 +C2 (s− i)

!vi +C1(s− i)
!vi+1 +C0 (s− i)

!vi+2

!x(7.7) =C3(0.7)
!v6 +C2 (0.7)

!v7 +C1(0.7)
!v8 +C0 (0.7)

!v9

C0 (t) =
t3

6

C1(t) =
−3t3 +3t2 +3t +1

6

C2 (t) =
3t3 − 6t2 + 4

6

C3(t) =
−3t3 +3t2 −3t +1

6
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#

$
$
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Shape	Description	by Fourier	Expansion	I
The	curvature function k(s)	of a	region is necessarily periodic:

k(s) = k(s+L) L = length of boundary

Hence k(s)	can be expanded by a	Fourier	series with coefficients:

To avoid problemswith curvature discontinuities at corners,	it is useful to
consider the slope intrinsic function:

with:

29

IP1	– Lecture 13:	Grouping and Shape	Features

cn =
1
L

k(s)exp(− 2πin
L0

L

∫ s)ds

!θ (s) =θ(s)− 2πs
L

−µ

θ(s) = k(ς )dς
0

s
∫ µ =

1
L

θ(s)− 2πs
L

"

#$
%

&'
ds

0

L
∫

tangent angle mean
(dependent on	starting point)

normalization
(to achieve periodicity)



Shape	Description	by Fourier	Expansion	II
The	shapeof a	contour can be approximately representedby a	limited	number
of harmonics of the Fourier	expansionof the slope intrinsic function θ´(s):
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cn =
1
L

!θ (s)exp(− 2πin
L0

L

∫ s)ds

Example:	
(fromDuda	and Hart	73:	Pattern	Classification and Scene	Analysis)

original

5	harmonics

10	harmonics

15	harmonics

Caution:	
It is questionable whether the
approximations by a	limited	number of
harmonics capture the most frequent
deviations from the normal.


