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Grouping by Relaxation

—>
M—H\ relaxation
——>

Relaxation methods seek a solution by stepwise minimization
("relaxation") of constraints.

Analogy with e S .
I\/\A/\/\/\/\/\/\’Fmﬂg\&@% %ﬁw%mwﬂ

AN
L]

Variables x; take on values (= positions) where springs are maximally relaxed corresponding to a
state of global minimal energy. Hence relaxation is often realized by "energy minimization".
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Contexts for Edge Relaxation

lterative modification of edge strengths using context-dependent
compatibility rules.

Context types:
-1 +1 -1 -1 +3
. H . :%.H. :H. :H. .H.H.
isolated uncertain spurious spurious connecting
edge continuation continuation continuation edge
+2 0 0 0 0
isolated uncertain uncertain uncertain uncertain
edge connection connection connection connection

+2

.H.H.

connecting
edge

-1

competing
edge

Each context contributes with weight w; = w;,x {-1 ... +2} toan interative

modification of the edge strength of the central element.
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Modification Rule for Edge Relaxation

Pk edge strength in position i after iteration k&
O strength of context j for position i after iteration &
w; weight factor of context j

Q; = HP n P,) edge context strength

m, n ranging over all supporting and not supporting edge positions of context j,
respectively.

1+ AP
P = p* 7 PkAlPk edge strength modification rule
+ i i
N
APk _ Qk
i = Wi edge strength increment
=l

There is empirical evidence (but no proof) that for most edge images this relaxation
procedure converges within 10 ... 20 iterations.
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Example of Edge-finding by Relaxation

Landhouse scene from VISIONS project, 1982
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Histogram-based Segmentation
with Relaxation |

Basic idea:

Use relaxationtointroduce a local similarity constraintinto histogram-based
region segmentation.

1. Determinecluster centers by multi-dimensional histogram analysis

green green

A A

[ ]
L4 g .
> clustercenters ¢, i=1.. N
[ ]

» red » red

2. Label each pixel by cluster-membership probabilitiesp;,, I =1... N

1
D = %li d; is Euclidean distance between the feature vector of the pixel
l EN 1 and cluster center ¢,
k=1 /d,
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Histogram-based Labelling
with Relaxation Il

3. lterativerelaxation of the p,(j) of all pixels j:
- equallabels of neighbouring pixels support each other

- unequallabels of neighbouring pixelsinhibiteach other

q,(j)= E [w'p,(k)-w™(1-p;(k))] D(j) is neighbourhood of pixel j

kED(j)
pl’(]) = pi(J).-l_ 9 () . new probability p; "(j) of pixelj to belong
z(pn(])+qn(])) to cluster i

4. Region assignmentof each pixel accordingto its maximal
membership probability: max p,

5. Recursiveapplication of the proceduretoindividual regions




Relaxation with a Neural Network

Principle: @ cellsinfluence each other”s
activation via exciting or
@ inhibiting weights

Relaxation labelling of 4 pixels:

pixel 1 pixel 2 pixel 3 pixel 4

-

(0
(CMMMP
Cataan:

bidirectional inhibiting connection

bidirectional exciting connection
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Hough Transform |

Robust method for fitting straight lines, circles or other geometric figures which can
be described analytically.

Given: Edge points in an image

Wanted: Straight lines supported by the edge points

An edge point (x;, y;) supports all straight lines y = mx + ¢ with
parameters m and c such that y, = mx; + c. Ac

The locus of the parameter combinations for straight lines through y>
(X1, Vi) is a straight line in parameter space. \

» N
VXN

Principle of Hough transform for straight line fitting:

e Provide accumulator array for quantized straight line parameter combinations

e For each edge point, increase accumulator cells for all parameter combinations
supported by the edge point

e Maxima in accumulator array correspond to straight lines in the image
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Hough Transform II

For straight line finding, the parameter pair (7, y) is commonly used because it avoids
infinite parameter values: y 4

xgcos(y) + ygsin(y) =r

Each edge point (x;, y;) corresponds to a
sinusoidal in parameter space:

Importantimprovement by exploiting direction information at edge points:

(X6 Vi @) |:> Xrcos(y) + yrsin(y) =r restrictedto ¢-0 <y <gp+o

gradient direction direction tolerance
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Hough Transform IlI

Same method maybe applied to other parameterizable shapes, e.g.
o circles:  (x;-x9)° t (Ve-yy)’ =1 3 parametersx,, y,,

r

Flaggschiff: MS Mona Lisa

a‘% Siidamerika Kreuzfahrt?
iba

* ellipses
((xk - x,)cosy +(y, —yo>siny)2+(<yk ~ Yo)cosy = (x, —xo>siny)

2 5 parametersxy, yy, a, b, ¥

b

a

Accumulatorarrays grow exponentially with number of parameters
— quantization must be chosen with care
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Generalized Hough Transform

 shapesare described by edge elements
(r 0 @) relative to an arbitraryreference
point (x.y.)

 @isusedasindexinto (r8) pairsofa
shape description

* edge pointcoordinates (x;,y,) and gradient

directi determi ble ref 9 {(r11011) (r12012) ... }

irection g, determine possible reference e H(ra1 011) (22 012) . }
pointlocations .

* likely reference pointlocationsare '¢N.- {(rng 011) (rn2 012) ... }

determined via maximain accumulator array

(Xk Vi 91) ‘ {(xc Y = { (i - 1i@p) cos Opp), (i - (@) sin 0i(pp) }

L» counter cell inaccumulator array
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Region Description for Recognition

* Forobjectrecognition, descriptions ofregionsinan image haveto be
compared with descriptions of regions of meaningful objects (models).

* The general problem of object recognition will be treated later.

* Here we learn basicregion description techniques for later stagesinimage

analysis (including recognition).

* Typically, region descriptions suppress (abstract from) irrelevant details

and exposerelevant properties. Whatis "relevant” depends on the task.

Example: OCR (Optical Character Recognition)

¢

) g

0x4b

¢

e

region abstraction 1 abstraction 2

abstraction 3
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Simple 2D Shape Features

For industrial recognition tasks it is often required to distinguish
e asmall number of different shapes

e viewed from a small number of differentview points

e with a small computational effort.

In such cases simple 2D shape features may be useful, such as:

* darea

* boxing rectangle

* boundary length

* compactness n
* second-order momentums

e polarsignature

 templates

Features may or may not have invariance properties:

e 2D translationinvariance

e 2D rotation invariance
e scaleinvariance
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Euler Number

The Euler numberis the difference between the number of disjoint regions and the
number of holes in an image.

P = number of parts Example: H
H = number of holes P=35 | '.
[ ] |

E=P-H H=2 | | EI

E=3 -
Surprisingly, £ (but not P or H) can be computed by |
simple local operators. _DI[
Operators for regions with asymmetric connectivity:
4-connected NE and SW | |

8-connected NW and SE

patternl = Ei
pattern2 = u

E = (count of patternl) - (count of pattern2)
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Area

The area of a digital region is defined as the number of pixels of the region. For an
arbitrarily fine resolution, areais translation and rotation invariant. In praxis,
discretization effects may cause considerably variations.

area = 28

= =

area = 31

= =
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Boxing Rectangle

(a.k.a. Bounding Rectangle or Bounding Box)

Boxing rectangle = width of a shape in x- and y-direction

* easytocompute Y a
A A

e notrotationinvariant

\ b

> X

To achieve rotation invariance, the rectangle must be fitted parallel to an
innate orientation of the shape. Orientation can be determined as the axis of
least inertia (see second order moments).
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Boundary Length

The boundarylength is defined as the number of pixels which constitute the
boundary ofa shape.

area=77
boundary
length =32
A
PN
// \\
/ N
7 N area=69
s X
. N
N\ N boundary
/
\\ // length =40
AN A
AN~
e ||
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Compactness

(boundary length)?
area

(non-)compactness =

Compactness describes analog shapes independent of linear
transformations.

very compact not very compact

Compactness for discrete shapes is in general not translation,
rotation or scale invariant due to discretization effects.

07.12.15 University of Hamburg, Dept. Informatics
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Center of Gravity

Considera 2D shape evenly covered with mass. Physical concepts such as:

e center of gravity
* moments of inertia

may be applied.

order moments sum to zero.

The center of gravity is the location where first-

Center-of-gravity coordinates:

D =digital region

.. .. Js
D )=0 } (4,)=0
ijED ijED
SRR
|D| {jED |D| {jED 2
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Second-order Moments

Second-order moments ("moments of inertia") measure the distribution of mass

relative to axes through the center of gravity.
moment of inertia relative to y-axis

) S )
mx=2(1—1s) =Ez —1 D| .
4 4 through center of gravity
ijeD ijeD
2 moment of inertia relative to x-axis
N . )
m, = E (-J,)" = 2 J —Js D| through center of gravity
ijED iiED
"mixed"moment of inertia relative to x- and y-
< osoNpr s e+ axis through center of gravity,
mxy = E (1_15)(]_]8) = E l.] - ls.]s D| . g . gn -y n
4 4 zero if x- and y-axis are "main axes
ijeD jeD
Ya
y A .
mx>my mxy_O mx<my mxy;é()
* »X T > X

21
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Axis of Minimal Inertia

The axis of minimal inertia can be used as an
innate orientation ofa 2D shape.

Inertia (= second order moment) m
relative to an axis is the sum of the
squared distances between all pixels of
the shape and the axis.

1. The axis of leastinertia passes through the center of gravity
2. The mixed moment m,, relativeto the axes vand w must be zero

If the mixed momentis nonzero, 2mxy
the axis must be turned by the angle ¢ @124 =
e axis must be turned by gle a: m,—m,
A e o

> X
> X ja
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Polar Signature

The polar signaturerecords the angular segments where circles around
the center of gravity lie within a shape.

« scalable from coarse to fine by appropriate number of circles

« radii of circles must be chosen judiciously

« translation-invariant

« rotation-invariance can be achieved by cyclic shifting

R] 1 1 I TN = 90
0 90 180 270 360
R2 — T 1 : i 180
0 90 180 270 360
270
R; : : : :
0 90 180 270 360
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Object Recognition Using
the Polar Signature

| ~

Model signatures

Recognition results
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Convex Hull

A region R is convex if the straight-line segment x;x, between any two points of R lies
completely inside of R.

For an arbitrary region R, the convex hull H
is the smallest convex region which contains R.

Example of shape with convex hull:

Intuitive convex hull algorithm:

1. Pick lowest and left-most boundary point of R as starting point P, = P,. Set direction of
previous line segment of convex-hull boundary to v = (0 -1)"

2. Follow boundary of R from current point P, in an anti-clockwise direction and compute angle 6,

of line PP, for all boundary points P, after P;. The point P, with (9q =min{d,} is a vertex of the
convex hull boundary.

3. SetP,=P,andv = (P, P,)’ and repeat2) and 3) until P, = P,.

There are numerous convex hull algorithms in the literature. The most efficient is O(N)
[Melkman 87], see Sonka et al. "Image Processing ...".
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B-Splines |

B-splines are piecewise polynomial curves which provide an approximation of
a polygon based on vertices.

¢-¢ae

precision depends on distances of vertices

Important properties:

eye-pleasing smooth approximation of control polygon
change of control polygon vertex influences only small neighbourhood
curve is twice differentiable (e.g. has well-defined curvature)

easy to compute

26
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B-Splines I

B-splines can be defined by means of a parametric (closed) curve

with one free parameter s:

N+l

x(s)= E\ZBl.(s)

with:
c s parameter, changinglinearly fromitoi+/
between verticesy. and v, |

. {}i vertices of control polygon

* B,(s) base functions,nonzeroonlyin [i-2, i+2]

2%
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B-Splines Il

Each base function B,(s) consists of four parts:

£ | + 1
Co(t) = g

362 +3t2 + 3t +1
Cl (t) = 6 a

3 —61° +4 )

Cz(t)=

3 +3t7 =3t +1
6

The resulting curve equation is:
X(8)=Cy(s-i)_+C,(s=1)v,+C,(s=)v,,, +C,(s =iV,

l

C3(t)=

Example:s=7.7, i=7
x(7.7)=C;(0.7)v, + C,(0.7)v, + C,(0.7)v, + C,(0.7)v,

28
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Shape Description by Fourier Expansion |

The curvature function k(s) of a region is necessarily periodic:
k(s) = k(s+L) L = length of boundary
Hence k(s) can be expanded by a Fourier series with coefficients:

c,=— f k(s)exp(— 27min

To avoid problems W|th curvature dlSCOhtIﬂUItIeS atcorners, it is useful to
considerthe slopeintrinsicfunction:

s)ds

0'(5) = (s) 225 -
L =
with: / \ 2 s
0(s)= [ k(s)ds s f le(s)——]ds
tangent angle normalization mean

(to achieve periodicity) (dependent on starting point)

29
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Shape Description by Fourier Expansion li

The shape of a contour can be approximately represented by a limited number
of harmonics of the Fourier expansion of the slope intrinsicfunction 6'(s):

27in
L

1L
c =— | 0'(s)exp(- s)ds
\ L{ (s)exp( )

Example:
(from Duda and Hart 73: Pattern Classification and Scene Analysis)

j_L 2 3 &%} 5 original
o Caution:
% . It is questionable whether the
5 harmonics . : .
approximations by a limited number of
(b)

harmonics capture the most frequent

i 27 3 &(} 5 10 harmonics deviations from the normal.
(c)

12 % M 5 15 harmonics




